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a b s t r a c t

In this paper the forced vibrations of a linear, single degree of freedom oscillator (sdofo)

with a time-varying mass will be studied. The forced vibrations are due to small masses

which are periodically hitting and leaving the oscillator with different velocities. Since

these small masses stay for some time on the oscillator surface the effective mass of the

applied to the oscillator with a time-varying mass. Not only solutions of the oscillator

equation will be constructed, but also stability properties for the forced vibrations will

be presented for various parameter values.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Systems with time-varying masses frequently occur in practice. Examples of such systems can be found in robotics,
rotating crankshafts, conveyor systems, excavators, cranes, biomechanics and in fluid–structure interaction problems [1,2].
The oscillations of electric transmission lines and cables of cable-stayed bridges with water rivulets on the surface are also
examples of time-varying dynamic systems [3]. For these mechanical constructions the 1-mode Galerkin approximation of
the continuous model will lead to a sdofo-equation. These sdofos are considered to be representative models for testing
numerical methods and for studying forces which are acting on the system [4]. In this paper the forced oscillations of a
linear sdofo with a (periodically and stepwise changing) time-varying mass will be studied. The free oscillations have been
recently studied in [5].

Consider the oscillations of a sdofo with a linear restoring force and a mass which varies in time according to a periodic
stepwise dependence. This model is perhaps the simplest model which describes the process of the vibrations of a cable
with rainwater located on it. Part of the raindrops hitting the cylinder (i.e. the cable) will remain on the surface of the
cylinder for some time, and will subsequently be blown or shaken off after some time. It will be assumed when mass is
added to or separated from the oscillator that the position of the center of the (total) mass of the oscillator is not influenced.
The following equation of motion for the sdofo can now be derived (see for instance [1, p. 152]):

M €y ¼ _Mðw� _yÞ � kyþ F; (1)

where y ¼ yðtÞ is the displacement of the oscillator (see Fig. 1), M ¼ MðtÞ is the time-varying mass of the oscillator, w ¼ wðtÞ

is the mean velocity at which masses (i.e. raindrops) are hitting or leaving the oscillator, k is the (positive)
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Fig. 1. The single degree of freedom oscillator.
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stiffness coefficient in the linear restoring force, F ¼ FðtÞ or F ¼ Fðt; y; _yÞ is an external force, and the dot denotes
differentiation with respect to t. The force F and the velocity w are measured positive in positive y direction (see Fig. 1).
In [5] the free vibrations and the stability (for F � 0 and w � 0 in (1)) of the sdofo have been studied, and in [8] the
vibrations and the stability of the sdofo for F � 0 and w is different from zero have been considered for the nondegenerate
cases. In this paper for the degenerate cases when F � 0 and wa0, and for some harmonic forcing cases (i.e. F is a harmonic
function in t) the oscillations and the stability of the sdofo will be studied in detail. Following [5] it turns out to be
convenient to separate the mass MðtÞ into a time invariant part M0 and into a time-varying part mðtÞ, that is,
MðtÞ ¼ M0 �mðtÞ, where M0 is a positive constant, and M0 �mðtÞ40. Then it follows that (1) can be rewritten in

d

dt
ðM0 �mðtÞÞ

dy

dt

� �
þ ky ¼

�dm

dt
wþ F: (2)

Then, by introducing the time-rescaling t ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M0=k

p
t Eq. (2) becomes

d

dt
1�

~mðtÞ
M0

� �
d ~yðtÞ

dt

� �
þ ~yðtÞ ¼ �

~wðtÞffiffiffiffiffiffiffiffiffi
M0k

p d ~mðtÞ
dt
þ ~F ðtÞ; (3)

where ~yðtÞ ¼ yð
ffiffiffiffiffiffiffiffiffiffiffiffi
M0=k

p
tÞ, ~mðtÞ ¼ mð

ffiffiffiffiffiffiffiffiffiffiffiffi
M0=k

p
tÞ, ~wðtÞ ¼ wð

ffiffiffiffiffiffiffiffiffiffiffiffi
M0=k

p
tÞ and ~F ðtÞ ¼ ð1=kÞFð

ffiffiffiffiffiffiffiffiffiffiffiffi
M0=k

p
tÞ. In this paper it will be

assumed that hðtÞ ¼ ~mðtÞ=M0 is a periodic step function with 1� hðtÞ40, that is,

hðtÞ ¼
e for 0otoT0;

0 for T0otoT;

(
(4)

and hðtþ TÞ ¼ hðtÞ, and e is a constant (in practice usually small) with 0oeo1. It should be observed that e is defined to be
the quotient m=M0, where m is the added mass at time T0, and where M0 is the mass of the oscillator. So, e can be seen as a
measure for the relative mass which is added at time T0. For convenience the tildes in (3) will be dropped, and a prime will
be introduced to denote differentiation with respect to t, yielding

ðð1� hðtÞÞy0ðtÞÞ0 þ yðtÞ ¼ �wðtÞo0

k
m0ðtÞ þ FðtÞ; (5)

where o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k=M0

p
is the natural frequency of the oscillator. The initial displacement and the initial velocity of yðtÞ are

given by

yð0Þ ¼ y0 and y0ð0Þ ¼ y0
0 : (6)

The paper is organized as follows. In Section 2 the initial value problem (5)–(6) will be studied with FðtÞ � 0. In this case
the small masses which are periodically hitting and leaving the oscillator (with nonzero velocities) can be seen as an
external force acting on the oscillator. The stability of the solution(s) of the initial value problem will be studied, and the
existence of periodic solutions will be investigated. In Section 3 it will be assumed that the force FðtÞ is a harmonic force,
that is, FðtÞ ¼ Acosðatþ bÞ, where A and b are constants, and where a is the frequency of the external force. Then the
following initial value problem for yðtÞ is obtained:

ðð1� hðtÞÞy0ðtÞÞ0 þ yðtÞ ¼ �wðtÞo0

k
m0ðtÞ þ Acosðatþ bÞ; (7)
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with initial conditions (6). The initial value problem (6)–(7) will be studied in detail in Section 3. The stability of the
solutions will be studied as well as the existence of resonance frequencies (depending on a). Finally, in Section 4 of this
paper some conclusions will be drawn, and remarks will be made about future research on this subject.

2. The case F � 0

In this section the initial value problem (5)–(6) with F � 0 will be studied, or equivalently

ðð1� hðtÞÞy0ðtÞÞ0 þ yðtÞ ¼ �wðtÞ
o0

h0ðtÞ; t40; (8)

with yð0Þ ¼ y0, y0ð0Þ ¼ y0
0 , o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k=M0

p
, and where hðtÞ is given by (4). This section is organized as follows. In Section 2.1

a representation for the solution yðtÞ of the initial value problem will be given. The stability properties of the solution(s)
will be discussed in Section 2.2, and in Section 2.3 the existence of periodic solutions will be investigated.

2.1. A representation of the solution

It is obvious that the derivative of hðtÞwith respect to t for 0otoT0 and T0otoT is equal to 0. Thus, for 0otoT0 Eq. (8)
becomes

ð1� eÞy00 þ y ¼ 0: (9)

The initial value problem for (9) can easily be solved, yielding

yðtÞ
y0ðtÞ

 !
¼M1ðtÞ

y0

y0
0

 !
; (10)

where matrix M1ðtÞ is given by

M1ðtÞ ¼
cosðtð1� eÞ�1=2

Þ ð1� eÞ1=2sinðtð1� eÞ�1=2
Þ

�ð1� eÞ�1=2sinðtð1� eÞ�1=2
Þ cosðtð1� eÞ�1=2

Þ

 !
:

At t ¼ T0 the function hðtÞ has a jump discontinuity. Consider the infinitesimal small time-interval T�0 rtrTþ0 , where
T�0 ¼ T0 � 0; Tþ0 ¼ T0 þ 0. For this interval the following conditions can be formulated: the displacement of the oscillator is
continuous, and the impulse of the system at t ¼ Tþ0 is equal to the impulse of the system at t ¼ T�0 plus the impulse of the
raindrop (which hits the oscillator). The continuity of the displacement at t ¼ T0 implies that yðT�0 Þ ¼ yðTþ0 Þ, and the
impulse condition can be obtained by integrating (8) with respect to t from t ¼ T�0 to t ¼ Tþ0 , yielding
y0ðTþ0 Þ � ð1� eÞy

0ðT�0 Þ ¼ ewðT0Þ=o0. And so,

yðTþ0 Þ

y0ðTþ0 Þ

 !
¼M2ðT0Þ

yðT�0 Þ

y0ðT�0 Þ

 !
þ

0

ewðT0Þ=o0

 !
¼M2ðT0ÞM1ðT0Þ

y0

y0
0

 !
þ

0

ewðT0Þ=o0

 !
; (11)

where M2ðT0Þ is given by M2ðT0Þ ¼ ð
1
0

0
1�eÞ. For T0otoT Eq. (8) has the following form:

y00 þ y ¼ 0 (12)

and the solution of Eq. (12) is given by

yðtÞ
y0ðtÞ

 !
¼M3ðtÞM2ðT0ÞM1ðT0Þ

y0

y0
0

 !
þM3ðtÞ

0

ewðT0Þ=o0

 !
; (13)

where M3ðtÞ is given by M3ðtÞ ¼ ð cosðt�T0Þ
�sinðt�T0Þ

sinðt�T0Þ
cosðt�T0Þ

Þ.

At t ¼ T the function hðtÞ has again a jump discontinuity. Consider the infinitesimal small time-interval T�rtrTþ,
where T� ¼ T � 0; Tþ ¼ T þ 0. For this interval the following conditions can be formulated: the displacement of the
oscillator is continuous, and the impulse of the system at t ¼ Tþ is equal to the impulse of the system at t ¼ T� plus the
impulse of the raindrop (which leaves the oscillator). The continuity of the displacement at t ¼ T simply implies that
yðT�Þ ¼ yðTþÞ, and the impulse condition can be obtained by integrating (8) with respect to t from t ¼ T� to t ¼ Tþ,
yielding ð1� eÞy0ðTþÞ � y0ðT�Þ ¼ �ewðTÞ=o0. And so,

yðTþÞ

y0ðTþÞ

 !
¼M4ðTÞ

yðT�Þ

y0ðT�Þ

 !
þ

0

�
ewðTÞ

o0ð1� eÞ

0
@

1
A; (14)

where M4ðTÞ is given by M4ðTÞ ¼ ð10
0

ð1�eÞ�1Þ. So, the solution of Eq. (8) on the interval 0otrTþ has been constructed, and at
t ¼ Tþ the solution is given by

yðTþÞ

y0ðTþÞ

 !
¼ A

y0

y0
0

 !
þW; (15)
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where

A ¼M4ðT
þ
Þ M3ðT

þ
ÞM2ðT0Þ M1ðT0Þ ¼

ab� cdð1� eÞ1=2 bcð1� eÞ1=2
þ adð1� eÞ

�adð1� eÞ�1
� bcð1� eÞ�1=2

�cdð1� eÞ�1=2
þ ab

 !
; (16)

where

a ¼ cosðT0ð1� eÞ�1=2
Þ; b ¼ cosðT � T0Þ;

c ¼ sinðT0ð1� eÞ�1=2
Þ; d ¼ sinðT � T0Þ; (17)

and where

W ¼M4ðT
þ
Þ M3ðT

þ
Þ

0
ewðT0Þ

o0

0
@

1
Aþ 0

�ewðTÞ
o0ð1� eÞ

0
@

1
A ¼

ewðT0Þ

o0
sinðT � T0Þ

eðwðT0ÞcosðT � T0Þ �wðTÞÞ

o0ð1� eÞ

0
BBB@

1
CCCA: (18)

To obtain the solution on the interval 0otrðnþ 1ÞTþ, the procedure should be repeated n more times, yielding for
t ¼ ðnþ 1ÞTþ:

yððnþ 1ÞTþÞ

y0ððnþ 1ÞTþÞ

 !
¼ Anþ1

y0

y0
0

 !
þ
Xn

r¼0

ArW: (19)

The properties of matrix A are known from [5]. For W ¼ ð0 0ÞT the oscillator is unstable when at least one of the
eigenvalues l1 or l2 is such that jljj41, or when l1 ¼ l2 with jljj ¼ 1 and the dimension of the corresponding eigenspace is
equal to one. In all other cases the oscillator is stable for W ¼ ð0 0ÞT. These results are summarized in Table 1, where
l1;2 ¼

1
2 trðAÞ7 1

2

ffiffiffiffi
D
p

with D ¼ ðtrðAÞÞ2 � 4, and trðAÞ is the trace of matrix A (see also [5]). The stability of the oscillator when
Wa0 will be determined in the next subsection.
2.2. On the stability of the oscillator

From the previous subsection (see (15)–(19)) it follows that the solution of Eq. (8) at t ¼ ðnþ 1ÞTþ and at t ¼ nTþ can be
linked by

ynþ1

ynþ1
0

 !
¼ A

yn

yn
0

 !
þW; (20)

where ynþ1 ¼ yððnþ 1ÞTþÞ, ynþ1
0 ¼ y0ððnþ 1ÞTþÞ and where A and W are given by (16) and (18), respectively. The solution of

the system of difference equation (20) is given by (19). However, the representation (19) is not very convenient to
determine the stability of the oscillator (due to an external force, that is, due to Wa0). Also the use of a fundamental
matrix for system (20) will lead to a representation (see for instance [6, p. 124]) from which it is not very convenient to
determine the stability. Now a diagonalization method will be used to obtain a representation of the solution from which
the stability of the oscillator can be determined immediately. From [7, p. 6] it follows that if the eigenvalues l1; l2 of a 2� 2
matrix A are distinct or if the two eigenvalues are coinciding and the dimension of the corresponding eigenspace is 2, then
from any set of linearly independent corresponding eigenvectors v1;v2 a matrix P can be formed, which is invertible and
Table 1
Stability properties of the oscillator when W ¼ 0.

Stability properties for trðAÞ The oscillator for W ¼ 0 is

�2otrðAÞo2 Stable

(jl1;2j ¼ 1)

trðAÞo� 2 or trðAÞ42 Unstable

(jljj41 for j ¼ 1 or j ¼ 2)

trðAÞ ¼ 2 Only stable when c ¼ d ¼ 0

(l1 ¼ l2 ¼ 1) and ab ¼ 1 in matrix A,

else unstable

trðAÞ ¼ �2 Only stable when c ¼ d ¼ 0

(l1 ¼ l2 ¼ �1) and ab ¼ �1 in matrix A,

else unstable
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P�1AP ¼ D ¼ diag½l1; l2�. Let

yn

yn
0

 !
¼ P

xn

xn
0

 !
; (21)

and substitute the transformation (21) into (20). Then, multiply the left- and the right-hand sides of the so-obtained
equation by the inverse matrix of P. So, we can rewrite (20) in the following form:

xnþ1

xnþ1
0

 !
¼

l1 0

0 l2

 !
xn

xn
0

 !
þ G; (22)

where

G ¼
G1

G2

 !
¼ P�1W: (23)

Then xn and xn
0 can be obtained, yielding

xn

xn
0

 !
¼

ln
1 0

0 ln
2

 !
x0

x0
0

 !
þ
Xn�1

r¼0

lr
1 0

0 lr
2

 !
G: (24)

Then use (21) and (23) in (24) to obtain for l1a1 and l2a1:

yn

yn
0

 !
¼ P

ln
1 0

0 ln
2

 !
P�1

y0

y0
0

 !
þ P

1� ln
1

1� l1
0

0
1� ln

2

1� l2

0
BBB@

1
CCCAP�1W: (25)

For the eigenvalues l1;2 ¼ 1 and the dimension of the corresponding eigenspace is two, it is obvious from (24) that the
solution (20) is unbounded, and that the oscillator is unstable for Wa0. In [5] it has been shown that for W ¼ 0 the
solution of (8) is bounded in this case. From [5], Eqs. (20)–(22) can be seen that the eigenvalues l1;2 of matrix A can be only
coinciding for l1 ¼ l2 ¼ 1, or l1 ¼ l2 ¼ �1, and if one of the eigenvalues is equal to 1 (or �1) then the other eigenvalue is
also equal to 1 (or �1). The case l1;2 ¼ 1 (and the dimension of the corresponding eigenspace is two) has just been
considered, and for the case l1;2 ¼ �1 (and the dimension of the corresponding eigenspace is two) it follows from (25) that
the solution is bounded, and so for l1 ¼ l2 ¼ �1 (and the dimension of the corresponding eigenspace is two) the oscillator
is stable. For all other noncoinciding values of l1;2 the stability properties of the oscillator easily follow from (25).

Now the following case still has to be considered: matrix A has two coinciding eigenvalues and the dimension of the
corresponding eigenspace is one (implying that matrix A cannot be diagonalized). For this case the Jordan-form matrix
method can be used as for instance described in [6,7]. It can be shown that again an invertible matrix P exists such that

P�1AP ¼ J ¼
71 1

0 71

 !
: (26)

Instead of (22) the following system will be obtained:

xnþ1

xnþ1
0

 !
¼

71 1

0 71

 !
xn

xn
0

 !
þ G: (27)

For l1;2 ¼ 1 xn and xn
0 can be determined from (27), yielding

xn ¼ x0 þ nx0
0 þ nG1 þ

nðn� 1Þ

2
G2;

xn
0 ¼ x0

0 þ nG2:

8<
: (28)

In (28) it can be seen that several terms are multiplied by n, so the vibrations of the oscillator will grow in time.
For l1;2 ¼ �1, one obtains

xn ¼ ð�1Þnx0 � ð�1Þnþ1n x0
0 �

G2

2

� �
þ G1 þ

G2

2

� �
cos2 pðnþ 1Þ

2

� �
;

xn
0 ¼ ð�1Þnx0

0 þ G2 cos2 pðnþ 1Þ

2

� �
:

8>>><
>>>:

(29)

Again there are several unbounded terms in (29), so the vibrations of the oscillator will also grow in time. All of the stability
properties of the oscillator (for Wa0) are summarized in Table 2.
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Table 2
Stability properties of the oscillator when Wa0.

Stability properties for trðAÞ The oscillator for Wa0 is

�2otrðAÞo2 Stable

(jl1;2j ¼ 1)

trðAÞo� 2 or trðAÞ42 Unstable

(jljj41 for j ¼ 1 or j ¼ 2)

trðAÞ ¼ 2 Unstable

(l1 ¼ l2 ¼ 1)

trðAÞ ¼ �2 Only stable when c ¼ d ¼ 0

(l1 ¼ l2 ¼ �1) and ab ¼ �1 in matrix A, else unstable

W.T. van Horssen et al. / Journal of Sound and Vibration 329 (2010) 721–732726
2.3. On the existence of periodic solutions

In this subsection the existence of qT- periodic solutions (with q 2 Zþ) for Eq. (8) will be investigated. Since a small mass
hits and leaves the oscillator with period T, it is natural to study the question whether qT-periodic solutions exist or not.
In [8] a uniqueness result about the existence of T-periodic solutions for (8) has recently been presented. In this section the
existence or nonexistence, and the uniqueness or nonuniqueness of qT-periodic solutions for Eq. (8) will be discussed in
detail. To study these properties the map (20) will be used, that is,

ynþ1 ¼ Ayn þW; (30)

where yn ¼ ðyðnTþÞ; y0ðnTþÞÞT, and where A and W are given by (16) and (18), respectively. For a T-periodic solution of (8) it
follows from (30) that ynþ1 ¼ yn ¼ yn�1 ¼ � � � ¼ y, and so y follows from (30):

y ¼ AyþW () ðI� AÞy ¼W: (31)

So, a unique, T-periodic solution of Eq. (8) exists when matrix I� A is invertible, or equivalently detðI� AÞa0, or
equivalently 1 is not an eigenvalue of matrix A, or equivalently trðAÞa2. When trðAÞ ¼ 2 or equivalently l ¼ 1 is an
eigenvalue of matrix A then there are two possibilities: there are no T-periodic solutions of Eq. (8), or there are infinitely
many T-periodic solutions. From (24) and (28) it is obvious that for Wað0;0ÞT there are no T-periodic solutions, and that for
W � ð0;0ÞT there are infinitely many T-periodic solutions.

For a qT-periodic solution of (8) with q 2 Zþ and qZ2 it follows from (30) that ynþq ¼ yn ¼ yn�q ¼ � � � ¼ y, and so it
follows from (30) that

ynþq ¼ Aynþq�1 þW ¼ AðAynþq�2 þWÞ þW ¼ � � � ¼) y ¼ Aqyþ ðAq�1
þ � � � þ Aþ IÞW () ðI� Aq

Þy

¼ ðAq�1
þ � � � þ Aþ IÞW () (32)

ðAq�1
þ � � � þ Aþ IÞðI� AÞy ¼ ðAq�1

þ � � � þ Aþ IÞW () ðAq�1
þ � � � þ Aþ IÞððI� AÞy�WÞ ¼ O: (33)

So, a unique, qT-periodic solution of Eq. (8) exists (see (32)) when matrix I� Aq is invertible, or equivalently detðI� Aq
Þa0,

or equivalently 1 is not an eigenvalue of matrix Aq, or equivalently those l’s with lq
¼ 1 are not eigenvalues of matrix A.

When l is an eigenvalue of matrix A, and lq
¼ 1, and la1 (the case of T-periodic solutions has already been studied) then

Aq�1
þ � � � þ Aþ I is not invertible, and Eq. (33) has at least one solution y ¼ ðI� AÞ�1W. And so, Eq. (33) has infinitely many

solutions, that is, there are infinitely many qT-periodic solutions (with qZ2) of Eq. (8) for all vectors W. It can be shown in
an elementary way that lq

¼ 1 and l is an eigenvalue of matrix A is equivalent with trðAÞ ¼ 2cosð2np=qÞ for at least one n in
the set 0;1;2; . . . ; q� 1. The results obtained so far about the existence (and uniqueness) of qT-periodic solutions of Eq. (8),
can be summarized as follows. Let l be an eigenvalue of matrix A, and let q be an element in Zþ. Then,
(i)
 If l ¼ 1 (3trðAÞ ¼ 2) then there are only T-periodic solutions when W � ð0;0ÞT.

(ii)
 If lq

¼ 1 and la1 for a certain qZ2 (3trðAÞ ¼ 2cosð2np=qÞ for at least one n in the set 0;1;2; . . . ; q� 1) then there are
infinitely many qT-periodic solutions of Eq. (8) for all vectors W.
(iii)
 If lqa1 then there is a unique qT- periodic solution of Eq. (8) for all vectors W.
3. The case with an external, harmonic force and wðtÞ � 0

In this section the initial value problem (6)–(7) with wðtÞ � 0 will be studied, that is,

ðð1� hðtÞÞy0ðtÞÞ0 þ yðtÞ ¼ Acosðatþ bÞ; t40; (34)
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with yð0Þ ¼ y0; y0ð0Þ ¼ y0
0 ; o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k=M0

p
, where hðtÞ is given by (4), and where a, A and b are constants. This section is

organized as follows. In Section 3.1 a representation for the solution yðtÞ of the initial value problem will be given.
The amplitude increase after one period T will be discussed in Section 3.2, and in Section 3.3 the stability properties of the
solution and the resonance cases will be investigated.

3.1. A representation of the solution

As in the previous section a map will be constructed which relates the solution at t ¼ ðnþ 1ÞT þ 0þ to the solution at
t ¼ nT þ 0þ. For simplicity the following notation will be introduced: ynð0

þ
Þ ¼ yðnT þ 0þÞ, ynþ1ð0

þ
Þ ¼ yððnþ 1ÞT þ 0þÞ,

ynðt�Þ ¼ yðnT þ t�Þwith 0ot�rT þ 0þ. Starting at t ¼ nT þ 0þ the solution will now be constructed (leading to the solution
at t ¼ ðnþ 1ÞT þ 0þ). For nTotonT þ T0 or equivalently for 0ot�oT0 Eq. (34) becomes

ð1� eÞy00 þ y ¼ Acosðatþ bÞ: (35)

For a2a1=ð1� eÞ a particular solution of (35) is given by

ypðtÞ ¼ y1pcosðatþ bÞ; (36)

where

y1p ¼
Af2

f2
� a2

; f ¼ ð1� eÞ�1=2: (37)

The initial value problem (with a2af2) can easily be solved for 0ot�oT0, yielding

ynðtÞ
yn
0 ðt�Þ

 !
¼M1ðt�Þ

ynð0
þ
Þ

yn
0 ð0þÞ

 !
þN1ðt�Þ

cosðanTÞ

sinðanTÞ

 !
; (38)

where

N1ðt�Þ ¼
y1pðc

�j� af�1a�lþ f �Þ y1pða
�lþ af�1c�j� g�Þ

y1pðfc�jþ aa�l� ag�Þ y1pðaa�j� fc�l� af �Þ

 !
; M1ðt�Þ ¼

a� c�f�1

�fc� a�

 !
;

and where a�; c�; j; l; f �; g� are given by

a� ¼ cosðft�Þ; c� ¼ sinðft�Þ; j ¼ cosðbÞ; l ¼ sinðbÞ;

f � ¼ cosðat� þ bÞ; g� ¼ sinðat� þ bÞ: (39)

For a2 ¼ f2 a particular solution of (35) on the time-interval nTotonT þ T0 is given by ypðtÞ ¼ ðA=2Þftsinðftþ bÞ, and
an expression almost similar to (38) can be given. At t� ¼ T0 the function hðtÞ in (34) has a jump discontinuity. As in Section
2 of this paper it follows for t� ¼ Tþ0 that

ynðt�Þ
yn
0 ðt�Þ

 !
¼M2M1ðT0Þ

ynð0
þ
Þ

yn
0 ð0þÞ

 !
þM2N1ðT0Þ

cosðanTÞ

sinðanTÞ

 !
; (40)

where M2 ¼ ð
1
0

0
f�2Þ. For T0ot�oT Eq. (34) is given by

y00 þ y ¼ Acosðatþ bÞ; (41)

and for a2a1 a particular solution of (41) can be written as

ypðtÞ ¼ y2pcosðatþ bÞ; (42)

where y2p ¼ A=ð1� a2Þ. The initial value problem (with a2a1) can easily be solved for T0ot�oT, yielding

ynðt�Þ
yn
0 ðt�Þ

 !
¼M3ðt�ÞM2M1ðT0Þ

ynð0
þ
Þ

yn
0 ð0þÞ

 !
þ ðM3ðt�ÞM2N1ðT0Þ þN3ðt�ÞÞ

cosðanTÞ

sinðanTÞ

 !
; (43)

where

N3ðt�Þ ¼
y2pðad�g � b�f þ p�Þ y2pðad�f þ b�g � q�Þ

y2pðab�g þ d�f � aq�Þ y2pðab�f � d�g � ap�Þ

 !
and M3ðt�Þ ¼

b� d�

�d� b�

� �
;

and where b�; d�; p�; q�; f ; g are given by

b� ¼ cosðt� � T0Þ; d� ¼ sinðt� � T0Þ; p� ¼ cosðat� þ bÞ;

q� ¼ sinðat� þ bÞ; f ¼ cosðaT0 þ bÞ; g ¼ sinðaT0 þ bÞ: (44)

For a2 ¼ 1 a particular solution of (41) on the time-interval nT þ T0otoðnþ 1ÞT is given by ypðtÞ ¼ ðA=2Þtsinðtþ bÞ, and
an expression almost similar to (43) can be given. At t� ¼ T the function hðtÞ in (34) has again a jump discontinuity. As in
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Section 2 of this paper it follows for t� ¼ Tþ that (observe that ynþ1ð0
þ
Þ ¼ ynðTþÞ and ynþ1

0 ð0þÞ ¼ yn
0 ðTþÞ):

ynþ1ð0
þ
Þ

ynþ1
0 ð0þÞ

 !
¼M4M3ðTÞM2M1ðT0Þ

ynð0
þ
Þ

yn
0 ð0þÞ

 !
þ ðM4M3ðTÞM2N1ðT0Þ þM4N3ðTÞÞ

cosðanTÞ

sinðanTÞ

 !
; (45)

where M4 ¼ ð
1
0

0
f2Þ. From (45) the following map can be obtained:

ynþ1ð0
þ
Þ

ynþ1
0 ð0þÞ

 !
¼ A

ynð0
þ
Þ

yn
0 ð0þÞ

 !
þWn; (46)

where A is given by (16), and where Wn is given by

Wn ¼ M4M3ðTÞM2N1ðT0Þ þM4N3ðTÞð Þ
cosðanTÞ

sinðanTÞ

 !
: (47)

Comparing (47) to (20) it should be observed that the nonhomogeneous term now explicitly depends on n. The solution of
the system of difference equation (46) is given by

ynð0
þ
Þ

yn
0 ð0þÞ

 !
¼ An y0ð0

þ
Þ

y0
0 ð0þÞ

 !
þ
Xn�1

r¼0

ArWr : (48)

For a2af2 and a2a1 the vector Wr is given by

Wr ¼
w11cosðarTÞ þw12sinðarTÞ

w21cosðarTÞ þw22sinðarTÞ

 !
; (49)

where

w11 ¼ y1pb
a
f

cl� ajþ f

� �
þ y1p

d

f2
ðfcjþ aal� agÞ þ y2pðadg � bf þ pÞ;

w12 ¼ y1pb
a
f

cjþ al� g

� �
þ y1p

d

f2
ðaaj� fcl� af Þ þ y2pðadf þ bg � qÞ;

w21 ¼ �y1pdf2 a
f

cl� ajþ f

� �
þ y1pbðfcjþ aal� agÞ þ y2pf

2
ðabg þ df � aqÞ;

w22 ¼ �y1pdf2 a
f

cjþ al� g

� �
þ y1pbðaaj� fcl� af Þ þ y2pf

2
ðabf � dg � apÞ:

For a2 ¼ f2 the vector Wr is given by (49) with

w11 ¼ y1p2bðfT0g � clÞ þ y1p
2d

f
ðfT0f þ cjÞ þ y2pðfdg � bf þ pÞ;

w12 ¼ y1p2bðfT0f � cjÞ � y1p
2d

f
ðfT0g þ clÞ þ y2pðfdf þ bg � qÞ;

w21 ¼ �y1p2f2dðfT0g � clÞ þ y1p2fbðfT0f þ cjÞ þ y2pf
2
ðfbg þ df �fqÞ;

w22 ¼ �y1p2f2dðfT0f � cjÞ � y1p2fbðfT0g þ clÞ þ y2pf
2
ðfbf � dg �fpÞ:

And for a2 ¼ 1 the vector Wr is given by (49) with

w11 ¼ y1pb
cl

f
� ajþ f

� �
þ y1p

d

f2
ðfcjþ al� gÞ þ y2pð2ðT � T0Þqþ p� p1Þ;

w12 ¼ y1pb
cj

f
þ al� g

� �
þ y1p

d

f2
ðaj� fcl� f Þ þ y2pð2ðT � T0Þp� q� q1Þ;

w21 ¼ �y1pf
2d

cl

f
� ajþ f

� �
þ y1pbðfcjþ al� gÞ þ y2pf

2
ð2ðT � T0Þpþ qþ q1Þ;

w22 ¼ �y1pf
2d

cj

f
þ al� g

� �
þ y1pbðaj�fcl� f Þ � y2pf

2
ð2ðT � T0Þqþ pþ p1Þ:

The coefficients a; b; c; d are given by (17), j; l are given by (39), and p ¼ cosðaT þ bÞ, q ¼ sinðaT þ bÞ, p1 ¼ cosðT � 2T0 � bÞ,
q1 ¼ sinðT � 2T0 � bÞ.
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3.2. The amplitude increase after one period T due to harmonic forcing

In this section the possible amplitude increase of the displacement function yðtÞ (after one period T) due to the external,
harmonic force will be studied. From (48) and (49) it can easily be seen that this increase is completely determined by

w11cosðanTÞ þw12sinðanTÞ ¼ gsinðanT þ dÞ; (50)

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

11 þw2
12

q
, and where d is given by sinðdÞ ¼ w11=g and cosðdÞ ¼ w12=g. The maximum amplitude response (in

absolute value) is g. Obviously, g depends on a;A; T0; T; d, and e. In Fig. 2 g as a function of a is plotted for A ¼ 1, T0 ¼ 100,

T ¼ 200, d ¼ p=7 and e ¼ 0:3. In Fig. 2 it can be seen that there are two peaks. These two peaks are a consequence of the

change of mass of the oscillator, and so the oscillator actually has two resonance frequencies (1 and ð1� eÞ�1=2). Since only
one period T for the amplitude response is considered these maximum amplitude responses are of course bounded. In Fig. 3
an optimization program has been used to show the maximum amplitude responses when A ¼ 1, T0 and T are varied such

that 0oT0oTo20, d ¼ p=7, and e ¼ 0:3. Similar results can be obtained for other values of A; T0; T; d, and e. For instance, in

Fig. 4 the results have been shown for A ¼ 1, 0oT0oTo100, d ¼ p=7, and e ¼ 0:3.
3.3. Stability properties of the solution, and resonance

In this subsection the stability properties and boundness of the solution of (46) will be studied. In fact the solution has
to satisfy (45), where M4, M3ðTÞ, M2, M1ðT0Þ, N1ðT0Þ, and N3 are defined in Section 3.1. It should be observed that in (45) the
matrices M4 �M3ðTÞ �M2 �M1ðT0Þ denoted by A and M4 �M3ðTÞ �M2 � N1ðT0Þ þM4 �N3ðTÞ denoted by B are both n

independent matrices. Then the system of two first-order ordinary difference equation (45) will be reduced to a single
ε−

γ
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10.80.60.40.20 1.4 1.6 1.8 2

Fig. 2. The maximum amplitude response g as a function of a for A ¼ 1, T0 ¼ 100, T ¼ 200, d ¼ p=7, and e ¼ 0:3.
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Fig. 3. The maximum amplitude response g as a function of a for A ¼ 1, 0oT0oTo20, d ¼ p=7, and e ¼ 0:3.
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Fig. 4. The maximum amplitude response g as a function of a for A ¼ 1, 0oT0oTo100, d ¼ p=7, and e ¼ 0:3.
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second-order difference equation for ynð0
þ
Þ ¼ yn, yielding

ynþ2 � ða11 þ a22Þynþ1 þ ða11a22 � a12a21Þyn ¼ c0cosðanTÞ þ s0sinðanTÞ þ c1cosðaðnþ 1ÞTÞ þ s1sinðaðnþ 1ÞTÞ; (51)

where aij ði; j ¼ 1;2Þ are the components of matrix A, and c0 ¼ b21a12 � b11a22, s0 ¼ b22a12 � b12a22, c1 ¼ b11, s1 ¼ b12,

and where bij ði; j ¼ 1;2Þ are the components of matrix B ¼M4 �M3ðTÞ �M2 � N1ðT0Þ þM4 �N3ðTÞ which are explicitly given

by the components wi;j (i; j ¼ 1;2) of matrix Wr in Eq. (49). In Eq. (51) a11 þ a22 ¼ trðAÞ is the trace of matrix A, and

a11a22 � a12a21 ¼ detðAÞ is the determinant of matrix A which is equal to 1 (see [5]). The solution yn of (51) can be written
as

yn ¼ yh;n þ yp0;n þ yp1;n; (52)

where yh;n is the solution of the homogeneous equation (related to (51)):

yh;nþ2 � trðAÞyh;nþ1 þ yh;n ¼ 0; (53)

and where ypm;n (with m ¼ 0;1) are the particular solutions of (51) satisfying

ypm;nþ2 � trðAÞypm;nþ1 þ ypm;n ¼ cmcosðaðnþmÞTÞ þ smsinðaðnþmÞTÞ: (54)

The roots of the characteristic equation belonging to the homogeneous equation (53) are given by

l1;2 ¼
1
2 trðAÞ7 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrðAÞÞ2 � 4

q
, and are, of course, coinciding with the eigenvalues of matrix A. The corresponding stability

properties of the homogeneous solution yh;n can be found in Table 1 or in [5]. The particular solutions ypm;n of (54) can be

found in the following way. First one looks for a particular solution ypm;n in the form

ypm;n ¼ C1mcosðaðnþmÞTÞ þ C2msinðaðnþmÞTÞ; (55)

where C1m and C2m are constants to be determined. By substituting (55) into (54), and then by collecting the coefficients of

cosðaðnþmÞTÞ and of sinðaðnþmÞTÞ it follows that C1m and C2m have to satisfy

cosð2aTÞ � trðAÞcosðaTÞ þ 1 sinð2aTÞ � trðAÞsinðaTÞ

�sinð2aTÞ þ trðAÞsinðaTÞ cosð2aTÞ � trðAÞcosðaTÞ þ 1

 !
C1m

C2m

 !
¼

cm

sm

 !
: (56)

The difference equation (51) has a unique solution when two initial conditions are given. And so, the particular solutions
ypm;n can be determined uniquely. To have a unique particular solution ypm;n it follows from (56) that the determinant of the

coefficient matrix in (56) should be nonzero. When the determinant is equal to zero then there are infinitely many
solutions or there is no solution. This will occur when

cosð2aTÞ � trðAÞcosðaTÞ þ 1 ¼ 0 and

sinð2aTÞ � trðAÞsinðaTÞ ¼ 0;

(
(57)

or equivalently when

trðAÞ ¼ 2cosðaTÞ: (58)

So, the particular solutions ypm;n can be determined uniquely when trðAÞa2cosðaTÞ. When trðAÞ ¼ 2cosðaTÞ the particular

solutions ypm;n will have the following form:

ypm;n ¼ nð ~C 1mcosðaðnþmÞTÞ þ ~C 2msinðaðnþmÞTÞÞ; (59)
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Table 3
Stability properties of the oscillator with a harmonic external force when Wna0.

Stability properties for trðAÞ The oscillator for Wna0 is

�2otrðAÞo2 Only unstable when

(jl1;2j ¼ 1) trðAÞ ¼ 2cosðaTÞ,

else stable

trðAÞo� 2 or trðAÞ42 Always unstable

(jljj41 for j ¼ 1 or j ¼ 2)

trðAÞ ¼ 2 Only stable when c ¼ d ¼ 0

(l1 ¼ l2 ¼ 1) and ab ¼ 1 in matrix A,

and aT is not an even multiple

of p, else unstable

trðAÞ ¼ �2 Only stable when c ¼ d ¼ 0

(l1 ¼ l2 ¼ �1) and ab ¼ �1 in matrix A,

and aT is not an odd multiple

of p, else unstable
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where ~C 1m and ~C 2m are constants to be determined. By substituting (59) into (54), and then by collecting the coefficients of

cosðaðnþmÞTÞ and of sinðaðnþmÞTÞ it follows that ~C 1m and ~C 2m have to satisfy

2cosð2aTÞ � trðAÞcosðaTÞ 2sinð2aTÞ � trðAÞsinðaTÞ

�2sinð2aTÞ þ trðAÞsinðaTÞ 2cosð2aTÞ � trðAÞcosðaTÞ

 !
~C 1m

~C 2m

 !
¼

cm

sm

 !
: (60)

Again to have a unique particular solution ypm;n (in the form (59)) it follows from (60) that the determinant of the

coefficient matrix in (60) should be nonzero. When the determinant is equal to zero there are infinitely many solutions or
there is no solution. This will occur when

2cosð2aTÞ � trðAÞcosðaTÞ ¼ 0 and

2sinð2aTÞ � trðAÞsinðaTÞ ¼ 0;

(
(61)

or equivalently when

trðAÞ ¼72 and sinðaTÞ ¼ 0: (62)

So, when trðAÞ ¼ 2cosðaTÞ and aT is not a multiple of p then the particular solution ypm;n will grow linearly in n (see
(59)). The condition (58), that is, trðAÞ ¼ 2cosðaTÞ is called a resonance condition. The case trðAÞ ¼ 2cosðaTÞ and aT is a
multiple of p still has to be studied. When aT is an even multiple of p the system of difference equation (45) becomes

ynþ1ð0
þ
Þ

ynþ1
0 ð0þÞ

 !
¼ A

ynð0
þ
Þ

yn
0 ð0þÞ

 !
þ B

1

0

� �
; (63)

and trðAÞ ¼ 2cosðaTÞ ¼ 2. System (63) with trðAÞ ¼ 2 already has been studied in Section 2.2 of this paper. From Table 2 it
follows that the solution of (63) is unstable. Similarly, when aT is an odd multiple of p the system of difference equation
(45) becomes

ynþ1ð0
þ
Þ

ynþ1
0 ð0þÞ

 !
¼ A

ynð0
þ
Þ

yn
0 ð0þÞ

 !
þ B

ð�1Þn

0

 !
; (64)

and trðAÞ ¼ 2cosðaTÞ ¼ �2. Since the eigenvalues of matrix A are both equal to�1 it is not difficult to see that the particular
solution of (64) will contain unbounded terms in n. So, also in this case the solution of (64) is unstable. All of the stability
properties of the solution of the oscillator equation (34) with an external harmonic force are summarized in Table 3.

4. Conclusions and remarks

In this paper the stability properties of the forced vibrations of a linear, single degree of freedom oscillator with a
periodically and stepwise changing time-varying mass have been studied. Two types of forcing have been studied. First, a
forcing has been investigated, due to a mass which hits the oscillator, stays for some time at the oscillator, and then leaves
the oscillator. The stability properties of the oscillator, and the existence and (non) uniqueness of periodic vibrations have
been studied in detail in Section 2 of this paper. Secondly, an external, harmonic forcing has been studied for an oscillator to
which a mass (with zero velocity) is added for some time, and then is taken away (with zero velocity). For this case an
interesting resonance condition has been found, and the stability properties of the oscillator problem have been presented
in Section 3 of this paper. When both forcing types are applied to the oscillator the results as obtained in Section 2 and in
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Section 3 of this paper can be combined, because the differential equation describing the problem is linear. It is also
interesting to see in Section 3 that due to the changing mass and due to the external harmonic forcing the instability region
shows two peaks. For a similar oscillator equation with a constant mass and an external, harmonic forcing one usually has
one peak in the instability region. This larger instability region might perhaps explain in part the instability mechanism for
rain-wind induced oscillations of cables in windfields. Usually cables in windfields are stable, but due to rain these cables
can become unstable. Water addition to the cables, water drop off, and water rivulets on these cables (and so, changing
aerodynamic forcing acting on the cable), and changing eigenfrequencies of the cable system certainly enlarge the
instability regions of these cables.

To obtain more realistic mathematical models for these rain-wind induced oscillations of cables in windfields one might
consider periodically and multi-stepwise changing time-varying masses. Other external forces (such as nonlinear drag-
and-lift forces, damping forces, and so on) can also be included in the model equation. The aforementioned extensions to
the model equation can be interesting subjects for future research.
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