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1. Introduction

Systems with time-varying masses frequently occur in practice. Examples of such systems can be found in robotics,
rotating crankshafts, conveyor systems, excavators, cranes, biomechanics and in fluid-structure interaction problems [1,2].
The oscillations of electric transmission lines and cables of cable-stayed bridges with water rivulets on the surface are also
examples of time-varying dynamic systems [3]. For these mechanical constructions the 1-mode Galerkin approximation of
the continuous model will lead to a sdofo-equation. These sdofos are considered to be representative models for testing
numerical methods and for studying forces which are acting on the system [4]. In this paper the forced oscillations of a
linear sdofo with a (periodically and stepwise changing) time-varying mass will be studied. The free oscillations have been
recently studied in [5].

Consider the oscillations of a sdofo with a linear restoring force and a mass which varies in time according to a periodic
stepwise dependence. This model is perhaps the simplest model which describes the process of the vibrations of a cable
with rainwater located on it. Part of the raindrops hitting the cylinder (i.e. the cable) will remain on the surface of the
cylinder for some time, and will subsequently be blown or shaken off after some time. It will be assumed when mass is
added to or separated from the oscillator that the position of the center of the (total) mass of the oscillator is not influenced.
The following equation of motion for the sdofo can now be derived (see for instance [1, p. 152]):

My = MW —y) — ky +F, (1)

where y = y(t) is the displacement of the oscillator (see Fig. 1), M = M(t) is the time-varying mass of the oscillator, w = w(t)
is the mean velocity at which masses (i.e. raindrops) are hitting or leaving the oscillator, k is the (positive)
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Fig. 1. The single degree of freedom oscillator.

stiffness coefficient in the linear restoring force, F = F(t) or F = F(t,y,y) is an external force, and the dot denotes
differentiation with respect to t. The force F and the velocity w are measured positive in positive y direction (see Fig. 1).
In [5] the free vibrations and the stability (for F=0 and w =0 in (1)) of the sdofo have been studied, and in [8] the
vibrations and the stability of the sdofo for F = 0 and w is different from zero have been considered for the nondegenerate
cases. In this paper for the degenerate cases when F = 0 and w+0, and for some harmonic forcing cases (i.e. F is a harmonic
function in t) the oscillations and the stability of the sdofo will be studied in detail. Following [5] it turns out to be
convenient to separate the mass M(t) into a time invariant part My and into a time-varying part m(t), that is,
M(t) = My — m(t), where M is a positive constant, and My — m(t)>0. Then it follows that (1) can be rewritten in

d dy —dm
a ((MO - m(t))a> +ky = quL F. (2)
Then, by introducing the time-rescaling t = \/M/kt Eq. (2) becomes
d m(7)\ dy(t) - =Ww(ndm(t) | =
E((l - Mo ) de )H’(T)_ ok dr T 3)

where J(t) = y(/Mo/kt), m(t) = m(/Mg/kt), W(t) = w(r/Mo/kt) and F(t) = (1/k)F(/My/kt). In this paper it will be
assumed that h(t) = m(t)/Mp is a periodic step function with 1 — h(t)>0, that is,

(4)

B ¢ for0<t<Ty,
®= 0 for To<t<T,

and h(t + T) = h(t), and ¢ is a constant (in practice usually small) with 0 <& < 1. It should be observed that ¢ is defined to be
the quotient m/My, where m is the added mass at time Ty, and where M is the mass of the oscillator. So, ¢ can be seen as a
measure for the relative mass which is added at time Ty. For convenience the tildes in (3) will be dropped, and a prime will
be introduced to denote differentiation with respect to 1, yielding

—W(T)wo

(1 =h@y' @) +y(1) = m'(7) + F(7), (3)

where wy = 1/k/Mp is the natural frequency of the oscillator. The initial displacement and the initial velocity of y(t) are
given by

y0)=yo and y'©0)=ys. (6)

The paper is organized as follows. In Section 2 the initial value problem (5)-(6) will be studied with F(t) = 0. In this case

the small masses which are periodically hitting and leaving the oscillator (with nonzero velocities) can be seen as an

external force acting on the oscillator. The stability of the solution(s) of the initial value problem will be studied, and the

existence of periodic solutions will be investigated. In Section 3 it will be assumed that the force F(7) is a harmonic force,

that is, F(t) = Acos(at + f), where A and f are constants, and where o is the frequency of the external force. Then the
following initial value problem for y(t) is obtained:

W(T)g

(1 = h(D)Y (0) +y(1) = — m'(z) + Acos(at + f), (7)
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with initial conditions (6). The initial value problem (6)-(7) will be studied in detail in Section 3. The stability of the
solutions will be studied as well as the existence of resonance frequencies (depending on «). Finally, in Section 4 of this
paper some conclusions will be drawn, and remarks will be made about future research on this subject.

2. Thecase F=0

In this section the initial value problem (5)-(6) with F = 0 will be studied, or equivalently
-w(T
(1= hEOW @) +3(0) = (@), T>0, (8)

with y(0) = yo, y'(0) = 4 , wo = \/k/Mo, and where h(7) is given by (4). This section is organized as follows. In Section 2.1
a representation for the solution y(7) of the initial value problem will be given. The stability properties of the solution(s)
will be discussed in Section 2.2, and in Section 2.3 the existence of periodic solutions will be investigated.

2.1. A representation of the solution

It is obvious that the derivative of h(t) with respect to 7 for 0<t<Tg and To <7 <T is equal to 0. Thus, for 0<7<Ty Eq. (8)
becomes

(1-¢y +y=0. (9)

The initial value problem for (9) can easily be solved, yielding
(@) Yo
=M 10
<y’(‘c)> 1(‘C)<y6 ) (10)

cos(t(1 — &)~ 1/?) (1 —&)"/%sin(z(1 — &)~ 1/?)
—(1 - &) 2sin(t(1 — &)"17?) cos(t(1 —e)~1/?) :

where matrix My (7) is given by

M (7) = (

At T = Ty the function h(t) has a jump discontinuity. Consider the infinitesimal small time-interval Ty <t<TJ, where
Ty =To — 0, T§ =Ty + 0. For this interval the following conditions can be formulated: the displacement of the oscillator is
continuous, and the impulse of the system at t = T is equal to the impulse of the system at t = Ty plus the impulse of the
raindrop (which hits the oscillator). The continuity of the displacement at t =T, implies that y(Ty) = y(T), and the
impulse condition can be obtained by integrating (8) with respect to t from t=T; to t=Tj, yielding
YT — 1 — ey (Ty) = ew(Tp)/wo. And so,

(1) ¥(Tg) 0 Yo 0
(y’(TJ)) = Mz”“(y/(m) * <8W(To)/600> = Ma(ToMu (T <y6 ) " <8W(T0)/w0>’ (1)
where My(Tp) is given by Ma(To) = ({ ,°,). For To<7<T Eq. (8) has the following form:
Y +y=0 (12)

and the solution of Eq. (12) is given by

YOV _ MaoMaToMyToy [ 20 ) + M 0 13
vy ) = 3(T)Ma(To)M; (To) % + M3(7) ew(To) /w0 |7 (13)

where M;3(7) is given by M3(t) = (fgfrg(fjgg) gg;gjg))).

At T =T the function h(t) has again a jump discontinuity. Consider the infinitesimal small time-interval T- <t<T",
where T~ =T -0, T* =T + 0. For this interval the following conditions can be formulated: the displacement of the
oscillator is continuous, and the impulse of the system at T = T* is equal to the impulse of the system at t = T~ plus the
impulse of the raindrop (which leaves the oscillator). The continuity of the displacement at T = T simply implies that
y(T~) = y(T*), and the impulse condition can be obtained by integrating (8) with respect to 7 from 1 =T~ to =T,
yielding (1 — e)y'(T*) — y'(T~) = —ew(T)/wy. And so,

. 0
yT T ew
= ()
(y’(Tﬂ) Mq(T)<y’(T_)> ’ (‘m) o

where My(T) is given by Ma(T) = (} a 0 ). So, the solution of Eq. (8) on the interval 0 <7 <T* has been constructed, and at

T = T* the solution is given by -
¥ ) Yo
(y,m)> :A<y6 ) w, (15)
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where
B . . B ab — cd(1 — &)1/ bc(1 — &)'? +ad(1 — &)
A= M4(T ) M3(T )MZ(TO) MI(TO) = <—ad(1 _ 8)’1 _ bc(] _ 8)71/2 —Cd(l _ 8)71/2 + ab 5 (16)
where
a=cos(To(1 —¢)?), b=cos(T—Tp),
¢ =sin(To(1 — &)~1?), d=sin(T — Tp), (17)
and where
0 0 %:O)sina —Ty)
W = My (T") Ms(T") (Sw(Tw) - ( —ew(T) ) = | sowTycos(T — Ty — wery |- (18)
o (1)0(1 —8) w0(1 — S)

To obtain the solution on the interval 0<t<(n+ 1)T", the procedure should be repeated n more times, yielding for

T=mn+DT*:
y((n+1TH) e [ Yo o
<y,((n+])m> =A™ <y6>+;AW. (19)

The properties of matrix A are known from [5]. For W = (0 0)" the oscillator is unstable when at least one of the
eigenvalues Z; or /; is such that |4;| > 1, or when 4; = 4, with |4j| = 1 and the dimension of the corresponding eigenspace is
equal to one. In all other cases the oscillator is stable for W = (0 0)'. These results are summarized in Table 1, where
J1p =1tr(A)+ %@ with D = (tr(A))*> — 4, and tr(A) is the trace of matrix A (see also [5]). The stability of the oscillator when
W30 will be determined in the next subsection.

2.2. On the stability of the oscillator

From the previous subsection (see (15)-(19)) it follows that the solution of Eq. (8) at t = (n + 1)T+ and at T = nT" can be

linked by
Ynt1 Yn
=A W, 20
(J’rﬁl) <y{1 > + (20)

where y,,1 =y(n+ DTT), yi1=y'(n+ 1)T*) and where A and W are given by (16) and (18), respectively. The solution of
the system of difference equation (20) is given by (19). However, the representation (19) is not very convenient to
determine the stability of the oscillator (due to an external force, that is, due to W=0). Also the use of a fundamental
matrix for system (20) will lead to a representation (see for instance [6, p. 124]) from which it is not very convenient to
determine the stability. Now a diagonalization method will be used to obtain a representation of the solution from which
the stability of the oscillator can be determined immediately. From [7, p. 6] it follows that if the eigenvalues 1,1, ofa 2 x 2
matrix A are distinct or if the two eigenvalues are coinciding and the dimension of the corresponding eigenspace is 2, then
from any set of linearly independent corresponding eigenvectors v, v, a matrix P can be formed, which is invertible and

Table 1

Stability properties of the oscillator when W = 0.
Stability properties for tr(A) The oscillator for W = 0 is
—2<tr(A)<2 Stable
(12121 =1)
tr(A)< — 2 or tr(A)>2 Unstable
(14j|>1forj=1orj=2)
tr(A) =2 Only stable when c=d =0
(M=4=1) and ab = 1 in matrix A,

else unstable

tr(A) = —2 Only stable when c=d =0
(A1 =42 =-1) and ab = —1 in matrix A,
else unstable
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) (2)

and substitute the transformation (21) into (20). Then, multiply the left- and the right-hand sides of the so-obtained
equation by the inverse matrix of P. So, we can rewrite (20) in the following form:

Xn+1 1 0 Xn
= G 22
(X;';+] ) < 0 )NZ) (XA > i ( )

Gy _
c=(GZ>=P1w. (23)

P~'AP = D = diag[};, /2]. Let

where

Then x, and x;, can be obtained, yielding

Xn\ 10 X0 n1 /37 0
() =00 2)(%)+5(s i) @

Then use (21) and (23) in (24) to obtain for 4,1 and 4, #1:

1-21

1

0

Yn A0\ (Yo 1— 7 B

<y,9>_[’<0 RIS Y L [PTW (25)

0 1-7,

For the eigenvalues 4;, =1 and the dimension of the corresponding eigenspace is two, it is obvious from (24) that the
solution (20) is unbounded, and that the oscillator is unstable for W+0. In [5] it has been shown that for W = 0 the
solution of (8) is bounded in this case. From [5], Egs. (20)-(22) can be seen that the eigenvalues /; , of matrix A can be only
coinciding for 21 = A, =1, or 41 = A, = —1, and if one of the eigenvalues is equal to 1 (or —1) then the other eigenvalue is
also equal to 1 (or —1). The case 4;, =1 (and the dimension of the corresponding eigenspace is two) has just been
considered, and for the case 4;, = —1 (and the dimension of the corresponding eigenspace is two) it follows from (25) that
the solution is bounded, and so for 1; = 1; = —1 (and the dimension of the corresponding eigenspace is two) the oscillator
is stable. For all other noncoinciding values of 4;, the stability properties of the oscillator easily follow from (25).

Now the following case still has to be considered: matrix A has two coinciding eigenvalues and the dimension of the
corresponding eigenspace is one (implying that matrix A cannot be diagonalized). For this case the Jordan-form matrix
method can be used as for instance described in [6,7]. It can be shown that again an invertible matrix P exists such that

P]AP:J:<i01 :1> (26)

Instead of (22) the following system will be obtained:

Xn4+1 il 1 Xn

For 212 =1 X, and X/, can be determined from (27), yielding

nmn-1)
2

G,

{x,, =Xg +nxy +nGy + (28)

Xy =xy +nGs.

In (28) it can be seen that several terms are multiplied by n, so the vibrations of the oscillator will grow in time.

For 4;, = —1, one obtains
Xn = (=1)"%o — (=1)""'n <x6 - %) + <G1 + %) cos? (n(n2+ 1)>,

nn+1)
)

(29)
X = (1" + Gy c052<

Again there are several unbounded terms in (29), so the vibrations of the oscillator will also grow in time. All of the stability
properties of the oscillator (for Ws0) are summarized in Table 2.
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Table 2

Stability properties of the oscillator when W 0.
Stability properties for tr(A) The oscillator for W0 is
—2<tr(A)<2 Stable
(I2121=1)
tr(A)< — 2 or tr(A)>2 Unstable
(141>1forj=1orj=2)
tr(A) =2 Unstable
(A1=4=1)
tr(A) = -2 Only stable when c=d =0
(M =4 =-1) and ab = —1 in matrix A, else unstable

2.3. On the existence of periodic solutions

In this subsection the existence of qT- periodic solutions (with q € Z*) for Eq. (8) will be investigated. Since a small mass
hits and leaves the oscillator with period T, it is natural to study the question whether gT-periodic solutions exist or not.
In [8] a uniqueness result about the existence of T-periodic solutions for (8) has recently been presented. In this section the
existence or nonexistence, and the uniqueness or nonuniqueness of gT-periodic solutions for Eq. (8) will be discussed in
detail. To study these properties the map (20) will be used, that is,

Yny1 = Ayn +W9 (30)
where y, = (y(nT*),y'(nT*))", and where A and W are given by (16) and (18), respectively. For a T-periodic solution of (8) it
follows from (30) that y,,1 =¥n =Yn_1 =--- =Y, and so y follows from (30):

Yy=Ay+W <= (I-Ay=W. (31)

So, a unique, T-periodic solution of Eq. (8) exists when matrix I —A is invertible, or equivalently det(I — A)+0, or
equivalently 1 is not an eigenvalue of matrix A, or equivalently tr(A)#2. When tr(A) = 2 or equivalently A =1 is an
eigenvalue of matrix A then there are two possibilities: there are no T-periodic solutions of Eq. (8), or there are infinitely
many T-periodic solutions. From (24) and (28) it is obvious that for W (0, 0)" there are no T-periodic solutions, and that for
W = (0,0)" there are infinitely many T-periodic solutions.

For a gT-periodic solution of (8) with q € Z* and g>2 it follows from (30) that yniq =Yn =¥n—q=---=Y, and so it
follows from (30) that

Ynig =AVnig1 *W=AAYn g2 +W+W=... = y=Aly+A" + .. +A+DW = (I-A%y
=A@ 4. FA+DW = (32)
AT 4 ALDA-AYy=AT"+ . +A+DW = AT 4. +A+DA-Ay-W)=0. (33)

So, a unique, qT-periodic solution of Eq. (8) exists (see (32)) when matrix I — A? is invertible, or equivalently det(I — A?)#0,
or equivalently 1 is not an eigenvalue of matrix A%, or equivalently those A’s with 17 = 1 are not eigenvalues of matrix A.
When / is an eigenvalue of matrix A, and A = 1, and 1 #1 (the case of T-periodic solutions has already been studied) then
A%' + ...+ A+1is not invertible, and Eq. (33) has at least one solution y = (I — A)"'W. And so, Eq. (33) has infinitely many
solutions, that is, there are infinitely many gT-periodic solutions (with g>2) of Eq. (8) for all vectors W. It can be shown in
an elementary way that A7 = 1 and / is an eigenvalue of matrix A is equivalent with tr(A) = 2cos(2n7n/q) for at least one n in
the set0,1,2,...,q — 1. The results obtained so far about the existence (and uniqueness) of qT-periodic solutions of Eq. (8),
can be summarized as follows. Let Z be an eigenvalue of matrix A, and let g be an element in Z*. Then,

(i) If 2 =1 (<tr(A) = 2) then there are only T-periodic solutions when W = (0,0)".
(ii) If 29 = 1 and 4 #1 for a certain g>2 (< tr(A) = 2cos(2nmn/q) for at least one n in the set 0,1,2,...,q — 1) then there are
infinitely many gT-periodic solutions of Eq. (8) for all vectors W.
(iii) If 221 then there is a unique gT- periodic solution of Eq. (8) for all vectors W.

3. The case with an external, harmonic force and w(t) = 0

In this section the initial value problem (6)-(7) with w(t) = 0 will be studied, that is,
(1 = h(@Y (@) +y(¥) = Acos(at + f), >0, (34)
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with y(0) = yo, ¥'(0) =yb, wo = v/k/Mp, where h(7) is given by (4), and where «, A and f are constants. This section is
organized as follows. In Section 3.1 a representation for the solution y(7) of the initial value problem will be given.
The amplitude increase after one period T will be discussed in Section 3.2, and in Section 3.3 the stability properties of the
solution and the resonance cases will be investigated.

3.1. A representation of the solution

As in the previous section a map will be constructed which relates the solution at T = (n 4+ 1)T + 0" to the solution at
T =nT +0". For simplicity the following notation will be introduced: y,(0") = y(nT 4+ 0"), y,,1(0") = y(n+ DT +0"),
Yn(t*) = y(nT + %) with 0<t* <T + 0". Starting at T = nT + 0" the solution will now be constructed (leading to the solution
at T = (n+ 1)T 4+ 07). For nT <t <nT + T, or equivalently for 0<t* <Ty Eq. (34) becomes

(1 —¢y" +y = Acos(at + f). (35)
For o2 #1/(1 — ¢) a particular solution of (35) is given by
Yp(T) = y1pcos(t + f). (36)
where
A’ _ ~12
y”’_—¢2—a2’ p=01—¢g 12 (37)
The initial value problem (with o ;éd)z) can easily be solved for 0 <1* <Ty, yielding
Yn(T) o [ Yn(©@) .. [ cosnT)
<y{1 (r*)) =M )(y,q 0% ) TN sinnr) ) (38)
where

Yip(©j— g~ @+ ) yip@l+od g e P!
N;(t%) = . . , Myt = )
1 <y1p(¢6*1 +oal—ogh)  yipea— el —of ) = g @
and where a*, c*,j,1,f*,g* are given by
a* = cos(¢t*), c* =sin(¢pt*), j=cos(ff), [=sin(p),

f*=cos(at* + f), g* =sin(at* + p). (39)

For o2 = ¢2 a particular solution of (35) on the time-interval nT <t <nT + Ty is given by y,(7) = (A/2)¢tsin(¢t + ), and

an expression almost similar to (38) can be given. At 7 = Ty the function h(t) in (34) has a jump discontinuity. As in Section
2 of this paper it follows for t* = T that

Yn(T*) yn(0F) cos(onT)
(}/r’x (T*)> = MM (To) <y',1 0% + M2Nq (To) sin(onT) |’ (40)
where M = (} dflz). For To<1* <T Eq. (34) is given by
Y’ +y = Acos(at + f), (41)
and for o? #1 a particular solution of (41) can be written as
Yp(T) = Y2pcos(ot + f), (42)
where y,, = A/(1 — o). The initial value problem (with o 1) can easily be solved for To<7* <T, yielding
Yn(T¥) . Yn(0h) . ... ( cos(anT)
<y1,1 (r*)) = Ms(t )Mle(T0)<y,,1 0% + (M3(7")M2N (To) + N3(7%)) sin(@nT) |’ (43)
where
Yaplod'g —b*f +p*)  yap(adf +b*g — q*) b*
N3 (%) = Ma(T5) =
3(T) <y2p(ab*g +d'f —oq') yapob'f —dig—apry | N4 M@ (—d* b*)’
and where b*, d*, p*,q*,f,g are given by
b* = cos(t* — Ty), d* =sin(t* —Ty), p* = cos(at*+ f3),
q* =sin(at* + f), f=-cos(@aTy+f), g=sin(aTy+ f). (44)

For o2 = 1 a particular solution of (41) on the time-interval nT + To <7 <(n + 1)T is given by y,(t) = (A/2)tsin(z + B), and
an expression almost similar to (43) can be given. At t* = T the function h(7) in (34) has again a jump discontinuity. As in
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Section 2 of this paper it follows for t* = T+ that (observe that y,,1(0") = y,(T*) and y;,,1(0") = y; (T*)):

YO0 M, M;(T)M;M; (To) yn(©0") + (MaM3(T)M2N; (To) + MaN3(T)) cos(anT) (45)
Vit | =MaMs Mol o) 4M3 2N1(To 4N3 sin(enT) |’
where My = (} ‘;’2). From (45) the following map can be obtained:
Ynr1(0%) yn(0h)
=A +W,, 46
(}’ﬁ+1(0+) ya (0) " (46)
where A is given by (16), and where W, is given by
cos(onT)
W;, = (MgM;3(T)M2Nq(To) + MaN3(T)) sin@nT) |’ (47)

Comparing (47) to (20) it should be observed that the nonhomogeneous term now explicitly depends on n. The solution of
the system of difference equation (46) is given by

yn(0F) yo(0") | ]
=A" + A'W, . 48
<y,a 0% Y6 (0%) ;, ' “8)
For 02 #¢? and o2 #1 the vector W; is given by

wy1cos(ourT) + wyasin(arT
W, — 11¢os(arT) 12.( ) ’ (49)
wo1cos(arT) + wopsin(arT)

where

) d .
w1y =y1pb<%cl -a +f> +y1pF((/)CJ + oal — og) + yop(adg — bf + p),

. d .
Wiz = Y1pb <%CJ +al —g> +y1pg(oca1 — ¢cl — of ) + yop(adf + bg — q),

War = —y1pd? (g ol - aj +f) + Y1pb(hG + wal — 0g) + yopd?(aibg + df — ),

o . .
Wi = —yrpdg? (5 G+ al - g) + yipbeaj — bl — of) + yap?(atbf — dg — ap).

For o2 = ¢2 the vector W, is given by (49) with

2d )
Wit = Y1p2b(¢pTog — cD) + y1p E(dﬁof + ¢j) + yap(pdg — bf + p),

. 2d
Wi = Y1p2b(¢Tof — ¢j) — Mpg(dﬁog +cl) + yop(¢pdf + bg — q),

Wa1 = —y1p2¢°d($Tog — cl) + y1p2¢b(PTof + ¢j) + y2pd” (pbg + df — P,

Wy = —y1p2¢° d(PTof — &) — y1p2hb(@Tog + ) + y2p$*(dbf — dg — ¢p).
And for &2 = 1 the vector W, is given by (49) with

. d .
Wiy =y1pb<f$— aj +f> +y1p?(¢q +al — g) +y2p2(T — To)q + p — p1)s

j d .
Wiz = Y1pb (;—] +al —g) +y1p?(a1 — ¢cl =) +y2p2(T - To)p — 4 — qv),

1 )
Wy = —y1p</>2d<% —qj +f> + Yipb(¢c + al — g) + y2p > (T — To)p + q + q1),

g .
W = —YIpd)zd(g{ +al— g) +y1pb(@j — el — ) = yapd> (T — To)q + p + p1).
The coefficients a, b, c,d are given by (17), j, I are given by (39), and p = cos(aT + f8), ¢ = sin(aT + ), p1 = cos(T — 2Ty — f),

q1 = sin(T — 2Ty — f).
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3.2. The amplitude increase after one period T due to harmonic forcing

In this section the possible amplitude increase of the displacement function y(t) (after one period T) due to the external,
harmonic force will be studied. From (48) and (49) it can easily be seen that this increase is completely determined by

wypcos(onT) + wypsin(onT) = ysin(anT + 9), (50)

where y = /w?, +w?,, and where § is given by sin(d) = wy;/y and cos(d) = wi, /7. The maximum amplitude response (in
11 1

absolute value) is . Obviously, y depends on «,A, Ty, T, d, and ¢. In Fig. 2 y as a function of « is plotted for A = 1, T, = 100,
T =200, 6 = /7 and ¢ = 0.3. In Fig. 2 it can be seen that there are two peaks. These two peaks are a consequence of the
change of mass of the oscillator, and so the oscillator actually has two resonance frequencies (1 and (1 — &)~'/?). Since only
one period T for the amplitude response is considered these maximum amplitude responses are of course bounded. In Fig. 3
an optimization program has been used to show the maximum amplitude responses when A = 1, Tp and T are varied such
that 0<Ty<T<20, 0 = /7, and & = 0.3. Similar results can be obtained for other values of A, Ty, T, 6, and ¢. For instance, in
Fig. 4 the results have been shown for A=1,0<Ty<T<100, § = n/7, and ¢ = 0.3.

3.3. Stability properties of the solution, and resonance

In this subsection the stability properties and boundness of the solution of (46) will be studied. In fact the solution has
to satisfy (45), where My, M3(T), M3, My (Ty), N1(Tp), and N3 are defined in Section 3.1. It should be observed that in (45) the
matrices My - M3(T) - M3 - M(Tp) denoted by A and My - M3(T) - M; - Ny(Tp) + My - N3(T) denoted by B are both n
independent matrices. Then the system of two first-order ordinary difference equation (45) will be reduced to a single

1 14 16 18 2

Fig. 3. The maximum amplitude response y as a function of « for A=1,0<Ty<T<20, 6 = /7, and ¢ = 0.3.
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Fig. 4. The maximum amplitude response y as a function of o for A= 1, 0<Ty<T<100, § = /7, and & = 0.3.

second-order difference equation for y,(0") = y,, yielding
Y2 — (A11 + A22)Yne1 + (@11022 — A12021)Yn = Cocos(anT) + Sosin(anT) + cycos(a(n + 1)T) + sysin(o(n + DT),  (51)

where g;; (i,j = 1,2) are the components of matrix A, and ¢ = by1a12 — b11a22, So = b22a12 — b12azz, €1 = b1y, 51 = by,
and where bj; (i,j = 1,2) are the components of matrix B = My - M3(T) - M3 - N1(Tp) + My - N3(T) which are explicitly given
by the components w;; (i,j = 1,2) of matrix W, in Eq. (49). In Eq. (51) aj1 + ax, = tr(A) is the trace of matrix A, and
a110;2 — A120271 = det(A) is the determinant of matrix A which is equal to 1 (see [5]). The solution y, of (51) can be written
as

Yn =Yhn +Ypon + Ypin, (52)
where yj, is the solution of the homogeneous equation (related to (51)):
yh,n+2 - tr(A)yh.n+1 +yh,n = 0> (53)

and where ypn, (with m = 0,1) are the particular solutions of (51) satisfying
Ypmnt2 — tT(A)Ypmnt+1 + Ypmn = Cm€0S(eu(n + m)T) + spsin(o(n + m)T). (54)
The roots of the characteristic equation belonging to the homogeneous equation (53) are given by

Jip =1t + 1 \/(tr(A))? — 4, and are, of course, coinciding with the eigenvalues of matrix A. The corresponding stability
properties of the homogeneous solution yj, , can be found in Table 1 or in [5]. The particular solutions ypm, of (54) can be
found in the following way. First one looks for a particular solution ypn, in the form

Ypmn = Cimcos(a(n + m)T) + Cymsin(o(n + m)T), (55)

where Cy,; and Gy, are constants to be determined. By substituting (55) into (54), and then by collecting the coefficients of
cos(oun +m)T) and of sin(a(n + m)T) it follows that Cy;,, and Gy, have to satisfy

(cos(ZaT) — tr(A)cos(«T) + 1 sin(2aT) — tr(A)sin(oT) > <C1m ) B <cm )

—sin(2aT) + tr(A)sin(xT)  cos(2uT) — tr(A)cos(aT) + 1 Com | — (56)

Sm

The difference equation (51) has a unique solution when two initial conditions are given. And so, the particular solutions
Ypmn can be determined uniquely. To have a unique particular solution y,m it follows from (56) that the determinant of the
coefficient matrix in (56) should be nonzero. When the determinant is equal to zero then there are infinitely many
solutions or there is no solution. This will occur when

cos(2aT) — tr(A)cos(aT)+1 =0 and 57
sin(2aT) — tr(A)sin(aT) = 0, ©7)
or equivalently when
tr(A) = 2cos(aT). (58)

So, the particular solutions y,m, can be determined uniquely when tr(A)#2cos(«T). When tr(A) = 2cos(«T) the particular
solutions ypmn will have the following form:

Ypmn = N(Cimecos((n + m)T) + Copsin(a(n + m)7)), (59)
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Table 3
Stability properties of the oscillator with a harmonic external force when W, #0.

Stability properties for tr(A) The oscillator for W, 0 is
—2<tr(A)<2 Only unstable when
(12121 =1) tr(A) = 2cos(aT),

else stable
tr(A)< — 2 or tr(A)>2 Always unstable
(141>1forj=1o0rj=2)
tr(A) = 2 Only stable when c=d =0
(=4 =1) and ab = 1 in matrix A,

and oT is not an even multiple
of 7, else unstable

tr(A) = -2 Only stable whenc=d =0
(M=l =-1) and ab = —1 in matrix A,
and oT is not an odd multiple
of 7, else unstable

where Cq,,, and Cs,, are constants to be determined. By substituting (59) into (54), and then by collecting the coefficients of
cos(oun + m)T) and of sin(a(n + m)T) it follows that Cy,, and Cp, have to satisfy

< 2cos(2aT) — tr(A)cos(aT)  2sin(2aT) — tr(A)sin(aT) ) (C‘]m ) 3 (cm >

—2sin(2aT) + tr(A)sin(aT) 2cos2oT) — tr(A)cos@T) | \ Com | — (60)

Sm

Again to have a unique particular solution y,m, (in the form (59)) it follows from (60) that the determinant of the
coefficient matrix in (60) should be nonzero. When the determinant is equal to zero there are infinitely many solutions or
there is no solution. This will occur when

2cos(2aT) — tr(A)cos(aT) =0 and 61
2sin(2aT) — tr(A)sin(aT) = 0, (61)
or equivalently when
tr(A) = +2 and sin(@T)=0. (62)

So, when tr(A) = 2cos(«T) and oT is not a multiple of 7 then the particular solution ypm, will grow linearly in n (see
(59)). The condition (58), that is, tr(A) = 2cos(aT) is called a resonance condition. The case tr(A) = 2cos(«T) and oT is a
multiple of 7 still has to be studied. When «T is an even multiple of 7 the system of difference equation (45) becomes

Yn+1(0+) y"(0+) 1 )
, =A[ °, +B , 63
<Yn+1 0" Y (07) (0 (63)
and tr(A) = 2cos(aT) = 2. System (63) with tr(A) = 2 already has been studied in Section 2.2 of this paper. From Table 2 it
follows that the solution of (63) is unstable. Similarly, when «T is an odd multiple of 7 the system of difference equation

(45) becomes
Yn1(0%) _ Yn(0") "
(ym <0+>> ‘A<y,a (0+>> +B< o ) (64)

and tr(A) = 2cos(«T) = —2. Since the eigenvalues of matrix A are both equal to —1 it is not difficult to see that the particular
solution of (64) will contain unbounded terms in n. So, also in this case the solution of (64) is unstable. All of the stability
properties of the solution of the oscillator equation (34) with an external harmonic force are summarized in Table 3.

4. Conclusions and remarks

In this paper the stability properties of the forced vibrations of a linear, single degree of freedom oscillator with a
periodically and stepwise changing time-varying mass have been studied. Two types of forcing have been studied. First, a
forcing has been investigated, due to a mass which hits the oscillator, stays for some time at the oscillator, and then leaves
the oscillator. The stability properties of the oscillator, and the existence and (non) uniqueness of periodic vibrations have
been studied in detail in Section 2 of this paper. Secondly, an external, harmonic forcing has been studied for an oscillator to
which a mass (with zero velocity) is added for some time, and then is taken away (with zero velocity). For this case an
interesting resonance condition has been found, and the stability properties of the oscillator problem have been presented
in Section 3 of this paper. When both forcing types are applied to the oscillator the results as obtained in Section 2 and in
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Section 3 of this paper can be combined, because the differential equation describing the problem is linear. It is also
interesting to see in Section 3 that due to the changing mass and due to the external harmonic forcing the instability region
shows two peaks. For a similar oscillator equation with a constant mass and an external, harmonic forcing one usually has
one peak in the instability region. This larger instability region might perhaps explain in part the instability mechanism for
rain-wind induced oscillations of cables in windfields. Usually cables in windfields are stable, but due to rain these cables
can become unstable. Water addition to the cables, water drop off, and water rivulets on these cables (and so, changing
aerodynamic forcing acting on the cable), and changing eigenfrequencies of the cable system certainly enlarge the
instability regions of these cables.

To obtain more realistic mathematical models for these rain-wind induced oscillations of cables in windfields one might
consider periodically and multi-stepwise changing time-varying masses. Other external forces (such as nonlinear drag-
and-lift forces, damping forces, and so on) can also be included in the model equation. The aforementioned extensions to
the model equation can be interesting subjects for future research.
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